En situation réelle, une simple métrique n’est généralement pas suffisante pour décrire les performances d’un modèle, il est nécessaire d’avoir une interprétation et explicabilité des performances afin de déterminer les limites réelles des modèles

Mathilde Brousmiche est chercheuse au sein du département IA de Multitel. Elle a réalisé une thèse en cotutelle entre l’Université de Mons et l’Université de Sherbrooke (Canada). Durant sa thèse, elle a travaillé avec différentes modalités telles que l’image et le son et plus particulièrement sur la fusion d’informations audio-visuelles avec des réseaux de neurones profonds dans le contexte de l’analyse de scènes.

L’axe majeur de ses travaux actuels concerne le suivi (tracking) d’objets. Ses recherches consistent d’une part à réaliser le tracking de plusieurs objets quelle que soit leur catégorie contrairement à la plupart des travaux réalisant le tracking d’une seule catégorie d’objets à la fois. D’autre part, les modèles d’IA développés doivent être adaptés à une situation réelle avec des contraintes matérielles et les performances doivent être interprétables et explicables à l’utilisateur.

L’IA réalise automatiquement le tracking d’un grand nombre d’objet permettant une meilleure compréhension de la scène ou encore une anticipation de la suite des évènements. Le tracking automatique permet par exemple de superviser et modéliser les flux de trafics pour améliorer la mobilité dans les centres urbains. Plusieurs métriques existent pour comparer les performances des modèles d’IA. Cependant elle ne reflète pas toujours les résultats attendus en situation réelle. La valeur de la métrique peut être plus faible mais le résultat obtenu mieux correspondre aux attentes de l’utilisateur. C’est pourquoi, l’interprétation concrète des performances et l’identification des limites des solutions implémentées permettent une meilleure compréhension de la part des utilisateurs et de proposer des modèles qui correspondent mieux aux attentes.

En situation réelle, une simple métrique n’est généralement pas suffisante pour décrire les performances d’un modèle, il est nécessaire d’avoir une interprétation et explicabilité des performances afin de déterminer les limites réelles des modèles.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée.