
Summer Workshop 25’ London

Project n°3 (part of GD 6)

Let’s Tile together!
Implementation of a Python library for performance analysis

Which scores can we use to rank
two-class classifiers?

rejection rate

detection rate

negative prediction rate

positive prediction rate
prevalence

accuracy

matching coefficient

error rate

misclassification rate

true negative rate

true positive rate

false positive rate

false negative rate

specificity

selectivity

inverse recall

sensitivity

recall

negative predictive value

inverse precision

positive predictive value

precision

false omission rate

false discovery rate

Jaccard’s coefficient
critical success index

intersection over union

similarity

Tanimoto coefficient

G-measure

Dice-Sørensen coefficient

F-one score

standardized negative predictive value

standardized positive predictive value

negative likelihood ratio

positive likelihood ratio

Cohen’s κ statistic

Heidke skill score

bias index

weighted accuracy

balanced accuracy

Youden’s index

informedness

markedness

Peirce skill score

determinant of the confusion matrix

F-Beta score

markedness

Clayton skill score

average conditional probability

And an infinity of others …

Bennet’s S

Goal

We want to
avoid biased analyses,

by considering a wide diversity of
performance orderings (scores)

that make sense for ranking.

PRACTICAL

SAFE COMPRE-
HENSIVE

We want to provide visualization tools
for various user profiles:

theoretical analysts,
method designers,

benchmarkers,
app developers,

…

We want to have
safe tools, showing
only performance orderings
(scores) that make sense for ranking.

We have strong theoretical foundations

S. Piérard, A. Halin, A. Cioppa, A. Deliège, and M. Van Droogenbroeck. Foundations of the
theory of performance-based ranking. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Nashville, Tennessee, USA, June 2025.

The ranking scores:
a continuum of suitable scores

RI : P →↑ RI(P) =
EP [SI]

EP [I]
=

∑
ω→! S(ω) I(ω)P ({ω})∑

ω→! I(ω)P ({ω})

! = {tn, fp, fn, tp}
S(tn) = S(tp) = 1
S(fp) = S(fn) = 0

RI : P →↑ RI(P) =
I(tn)P ({tn}) + I(tp)P ({tp})

I(tn)P ({tn}) + I(fp)P ({fp}) + I(fn)P ({fn}) + I(tp)P ({tp})

1

RI : P →↑ RI(P) =
EP [SI]

EP [I]
=

∑
ω→! S(ω) I(ω)P ({ω})∑

ω→! I(ω)P ({ω})

! = {tn, fp, fn, tp}
S(tn) = S(tp) = 1
S(fp) = S(fn) = 0

RI : P →↑ RI(P) =
EP [SI]

EP [I]
=

∑
ω→{tn,tp} I(ω)P ({ω})

∑
ω→{tn,fp,fn,tp} I(ω)P ({ω})

1

RI : P →↑ RI(P) =
EP [SI]

EP [I]
=

∑
ω→! S(ω) I(ω)P ({ω})∑

ω→! I(ω)P ({ω})

! = {tn, fp, fn, tp}
S(tn) = S(tp) = 1
S(fp) = S(fn) = 0

RI : P →↑ RI(P) =
EP [SI]

EP [I]
=

∑
ω→{tn,tp} I(ω)P ({ω})

∑
ω→{tn,fp,fn,tp} I(ω)P ({ω})

1

Let’s particularize this family of scores
to the case of two-class classification!

The Tile: a 2D map of the performance
orderings induced by the ranking scores

m
or

e
im

po
rt

an
ce

 o
n

tr
ue

ne
ga

tiv
es

(t
n)

more importance on
false negatives (fn)

more importance on
false positives (fp)

m
ore im

portance on
true

positives (tp)

TPR
= Recall

= Sensitivity

TNR
= Specificity

PPV
= Precision

NPV

Accuracy
F-one

0

1

0.5

b
=
𝐼
𝑓𝑛

=
1
−
𝐼(
𝑓𝑝
)

0 10.5
𝑎 = 𝐼 𝑡𝑝 = 1 − 𝐼(𝑡𝑛)

0

1

0.5

b
=
𝐼
𝑓𝑛

=
1
−
𝐼(
𝑓𝑝
)

0 10.5
𝑎 = 𝐼 𝑡𝑝 = 1 − 𝐼(𝑡𝑛)

Let me introduce you to four friends …

The theoretical analyst

The method designer

The benchmarker

The app developer

Example of Flavor: Correlation Tiles

For a theoretical analyst

« What is the behavior of this particular score? »

Suggested interpretation. The score is not perfectly rank-
correlated with any of the ranking scores. This is usually the sign
that it cannot be used to establish meaningful performance
orderings. However, it has a correlation of about 0.85 with the
accuracy (center of the Tile), which is quite high.

Example of Flavor: Value Tiles

For a method designer

« What are the strengths and weaknesses
of the method I'm developing? »

Suggested interpretation. The values taken by the canonical
ranking scores show that the strength of the method is when
importance is put on the TNs and FPs and its weakness is when
the importance is put on the TPs and FNs. Moreover, the region
of the Tile where no-skill classifiers perform better is huge.

Example of Flavor: Ranking Tiles

For a benchmarker

« How does this particular method rank w.r.t.
the application specific preferences ? »

Suggested interpretation. The method is ranked 11th to 56th ,
among 74, depending on the application-specific preferences. It
performs better than most methods in the bottom of the Tile,
where more importance is put on false positives than on false
negatives.

Example of Flavor: Entity Tiles

For an app developer

« Show me the most appropriate method w.r.t.
the application specific preferences! »

Suggested interpretation. Unless you give much more
importance to the false positives than to the false negatives
(bottom of the tile), Mask2Former and SETR are the methods
you should implement.

Objectives

• A first version of an open-source library
to produce Tiles (functional and documented)

• Easy to use by all researchers

• Flexible to handle a wide range of flavors

• That we plan to published on GitHub, TRAIL factory, PyPI

• And ready to be submitted to a journal
(e.g. JOSS, The Journal of Open Source Software)

Opportunities

To share your talents

• in software architecture design;
• in software development and documentation;
• and all others!

To become author of an open-source library

To discover the Tile in all its details

Thank you for your attention !

Summer Workshop 25’ London

