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Abstract Instance segmentation enables both class-level and instance-level analysis, making it 
invaluable for biomedical imaging applications such as histopathology. However, obtaining 
annotations for instance segmentation is significantly more labor-intensive than for 
semantic segmentation, leading to a scarcity of labeled data and specialized models for this 
task. At the same time, several self-supervised foundation models using large quantities of 
unlabeled data have been proposed to be used as general-purpose feature extractors. 
Adapting those models to instance segmentation with only a few annotated patches offers 
a promising path to reduce annotation burden while leveraging their robustness and 
performance. In this context, recent studies have demonstrated the feasibility of 
repurposing these models for instance segmentation in histopathology. However, the 
potential of domain-specialized semantic segmentation models and other, more recent, 
foundation models remains underexplored.  Thus, we propose broadening the scope of 
these studies to newly released foundational models for histopathology, as well as 
specialist models, e.g. models trained for semantic segmentation.   Additionally, we will 
provide a more comprehensive benchmark for these approaches on a wider range of 
datasets. This work aims to reduce the cost of instance-level annotation, accelerate the 
deployment of AI tools in clinical and research workflows, and enable broader access to 
instance segmentation in resource-constrained settings where large-scale annotation is not 
feasible. Moreover, we will study the impact of imperfect training data on downstream 
performances by leveraging a previously collected re-annotation of the MoNuSac challenge 
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dataset as well as artificial corruptions, and propose a data quality assessment tool, in the 
form of an annotation quality predictor. Although our work will focus on histopathology, it 
could apply to other domains with similar needs, such as multiple sclerosis lesion instance 
segmentation in brain MRI.  
 

Project 
Objectives 

Leverage foundational models and specialized segmentation models to provide accurate 
instance segmentation in H&E-stained whole slide images using only a few patches with 
instance annotations. 

Project 
Dataset 

Lizard: https://www.kaggle.com/datasets/aadimator/lizard-dataset (495000 nuclei / Colon 
only).  
PanNuke: https://huggingface.co/datasets/RationAI/PanNuke (205000 nuclei from different 
tissues). 
NuCLS: https://sites.google.com/view/nucls/home (220000 nuclei / Breast only). 
MoNuSac: https://monusac-2020.grand-challenge.org/ (46 000 nuclei from 37 centers and 
71 patients). 
ConSEP:  https://paperswithcode.com/dataset/consep (41 1000 X 1000 images with 
instance annotations for 24 319 nuclei –– Colon only). 
Ocelot:  https://ocelot2023.grand-challenge.org/datasets/ (113 026 nuclei from 663 
patches of size 1024 X 1024, 6 organs) 
Panoptils: https://sites.google.com/view/panoptils/ (814 886 nuclei from 1709 patches, 
breast cancer) 
PUMA:  https://puma.grand-challenge.org/ (310 patches of size 1024 x 1024 with instance 
annotations, about 100 000 nuclei in total, 8 different organs) 
 

Background 
Information 

Histopathology analysis tackles automatic processing of very high-resolution images (up to 
100k x 100k pixels) obtained from organic tissue, with numerous applications in oncology. 
Currently, there is a growing interest in foundational models in histopathology [1 – 7,10]. 
These models are trained from large scale histopathology data, following self-supervised 
learning paradigms, largely bypassing the need for human annotation. They can later be 
used as powerful features extractors, at different patches scale or at the whole slide level. 
They have shown impressive performance for classification or regression, both for patch and 
slide centric tasks. Additionally, a few works investigate their performance on semantic 
segmentation [4, 6, 7]. More recently, adaptation methods have been proposed to leverage 
pre-trained models for instance segmentation tasks [8, 9, 11], but they remain limited in the 
number of investigated downstream tasks or pre-trained models. 
 
Overview of adaptation methods:  

- CellViT [8] pioneered adapting foundational histopathology to nuclei instance 
segmentation. They employ an encoder-decoder architecture where the encoder is 
initialized with a foundational model, i.e. HIPT or SAM. The decoder predicts three 
maps: a binary semantic segmentation mask, a radial distance to instance center, 
and a nuclei type probability. Post-processing then assigns an instance label to each 
foreground pixel, and a nuclei type to each instance. They train and evaluate their 
approach using the PanNuke dataset. They further investigate the performance of the 
PanNuke trained model on MoNuSeg for nuclei detection, and analyze cell 
embeddings on the ConSeP dataset. 
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- CellVTA [11] uses the same core concepts as CellViT but additionally incorporates 
high-resolution spatial features in the query of each transformer layer in the encoder. 
They train and evaluate their approach on CoNIC and PanNuke. 

- CellViT++ [9] follows the same core principle of CellViT, but investigates Virchow2, 
UNI, HIPT and SAM. They first train their model on PanNuke, and later investigate 
performance on Ocelot, ConSeP, Lizard, NuCLS and PanopTILs. Notably, they fine-
tune their model on CoNSeP and present results with a varying amount of finetuning 
data. 
 

Overview of foundational models for histopathology 
- Prov-GigaPath [1] was pretrained on a proprietary dataset of more than 1.3 billion 256 

X 256 patches from 171 189 whole slide images. The model uses both a tile encoder, 
trained following DinoV2, and a slide level encoder, trained following LongNet. It was 
tested on a task of gene mutation prediction, cancer subtyping and image-text 
alignment. 

- Virchow2 [2] was trained using a proprietary dataset of more than 1.5 million whole 
slide images. It uses a self-supervised training scheme adapted from DinoV2 and 
was tested on 7 tiles classification benchmarks. 

- REMEDIS [3] uses convolutional networks pre-trained on natural images to adapt 
them to the medical domain using an annotation free contrastive learning scheme. 
For histopathology, they pre-train the model on 50 million unlabeled patches from 
TCGA. 

- CTransPath [4] trains a hybrid CNN-Transformer architecture using a training 
algorithm adapted from the MocoV3 contrastive learning scheme, with 15 million 
patches extracted from 30 000 whole slide images. They evaluate their model for 5 
downstream tasks, i.e. patch retrieval, patch classification, whole-slide image 
classification, mitosis detection, and colorectal adenocarcinoma gland 
segmentation. 

-  HIPT [5] is trained with 10 000 whole slide images. They train three encoders 
sequentially, at respective scales of 256 X 256, 4096 X 4096, and whole slide. They 
use a pretraining scheme derived from DINO. They test their model on two 
downstream tasks, cancer subtyping and cancer survival prediction. 

- UNI [6] is trained using more than 100M whole slide images, following the DinoV2 
pretraining scheme. They evaluate the model on ROI-level classification, 
segmentation, retrieval and prototyping, and slide-level classification tasks. 

- CONCH [7] uses 1.17 million image-caption pairs to pre-train both a visual and a 
textual encoder with a vision-language contrastive pretraining scheme. It is tested on 
histology image classification, segmentation, captioning, and text-to-image and 
image-to-text retrieval. Notably, the pretraining data include several different 
staining, compared to the standard H&E staining. 

- Quilt-1M [10] is a CLIP model fine-tuned on 1M of image-text pairs obtained from 
educational youtube videos about histopathology, research articles and twitter.  

 
Data Quality Assessment 
An often overlooked challenge in histopathology images analysis is the quality of the ground 
truth annotations. For instance, [12] has shown how the MoNuSac contains significant noise 
in its labeling, leading to degraded performances of models trained on the dataset or 



 

 

incorrect evaluation of models’ effectiveness. Subsequently, they presented a method for 
extracting subsets with reduced noise from the original dataset. Similarly, [13] investigated 
how corruptions of the training data could impact the performance of CNNs trained from a 
random initialization. Over the course of the workshop, we will investigate how imperfect 
annotations may influence the adaptation of foundational models to the task of instance 
segmentation. In addition, we will seek to develop a data quality assessment tool in the form 
of a neural network capable of predicting annotations quality, thereby improving the 
reliability of performance evaluation in histopathology images analysis. For this, we will 
leverage a cleaned MoNuSac dataset provided by the ULB, as well as artificial corruptions 
of patches in the datasets listed above. The neural network will be trained by leveraging 
initialization with foundational models. 
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Figure 1 - Example data from MoNuSac taken from their website. 

 

Figure 2 - Example of an annotated patch from BCSS. Note there are no instance-level annotations. 
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Detailed Work 
Plan 

The team leaders will prepare both a dataset and instantiate the two adaptation methods 
with one foundational model before the start of the workshop. The first week will therefore 
be dedicated to casting the other datasets to this common format and instantiate the 
adaptation methods with all relevant pre-trained models. The second week will be 
dedicated to the generation of results with a varying number of annotations and training the 
data quality predictor. Computational resources will be provided by the CECI clusters, 
namely Manneback and Lyra. Additionally, a dedicated machine with 4 A10 40 Gb GPU can 
be reserved through the MedReSyst (UCLouvain) project for the workshop duration. From 
our references, we estimate the highest computational requirement would be about 30 GPU 
hours on a single A100 80 Gb (available on Manneback) for the largest model and largest 
dataset. For the other datasets, the computational requirements should be about 1 to 6 GPU 
hours. We will also need tables, chairs, markers, a whiteboard, power outlet for team 
member’s laptops, and a stable and fast internet connection for access to clusters.  

Other 
Remarks 

 


