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I obtained my Master’s degree in Aerospace Engineering from ULiège (Belgium). I then 
joined the von Karman Institute for Fluid Dynamics, where I completed my PhD in 
aeroacoustics. My doctoral research focused on the application of data-driven 
techniques to model wall pressure spectra for Amiet’s trailing edge noise model. The PhD 
was awarded by KU Leuven (Belgium). 
 
Following this, I joined Safran Aero Boosters, where I contributed to the optimization of 
low-pressure compressors. In September 2023, I joined Cenaero as part of the Machine 
Learning and Optimization research team. My work primarily involves the application of 
machine learning to physical problems, including within the framework of the ARIAC 
project. 
 

Abstract Turbulence is a fundamental physical phenomenon that plays a crucial role in 
understanding and modelling the complexity of real fluid flows. Due to its chaotic nature 
and multi-scale dynamics, its modelling remains one of the major challenges in 
Computational Fluid Dynamics (CFD) in particular for the design of industrial applications 
such as aircraft wings or turbofan blades.  

The enhancement of computational capabilities and the increased accessibility to large-
scale clusters have facilitated the generation of high-fidelity numerical datasets. 
Simultaneously, the rapid development of machine learning methods, particularly the 
large diffusion of AI methods for images synthesis and generation, has opened new 
opportunities to leverage data-driven image generation models for predicting turbulent 
flow fields. 

This project focuses on the generation of realistic turbulent flow fields using modern 
generative techniques, with the goal of improving turbulence injection in numerical 
solvers. Participants will work with a database of Decaying Homogeneous Isotropic 
Turbulence (DHIT) simulations obtained at various Reynold numbers, a dimensionless 
parameter that indicates how turbulent the flow is.  

The task of the participant is to develop a generative model capable of producing a 
sequence of 2D turbulent snapshots for a given Reynolds number. The generated 
fields must replicate both the statistical properties and dynamic behaviour of the 



 

 

reference dataset so that it can serve as physically consistent inflow boundary 
conditions in Argo, Cenaero’s high-fidelity CFD solver. 

This project offers a unique opportunity for ML practitioners to apply their skills to 
model space-time chaotic data with physical constraints, and complex multi-scale 
dynamics with state-of-the-art generative models such as GANs, Diffusion Models or 
VAEs. 

 

 

 

Project 
Objectives 

The objective of this project is to develop and evaluate machine learning-based models 
for the synthesis of turbulent flow fields images, with a specific focus on their application 
to turbulence injection. Participants will be provided with a database of turbulent flows 
and a set of predefined evaluation metrics to guide model development and 
benchmarking.  
 
To address this task, a wide range of modelling techniques may be considered. These 
include methods such as Variational Auto-encoders (VAEs), Normalizing Flows, 
Generative Adversarial Networks (GANs), and Diffusion Models (DMs). In addition, these 
generative approaches can be combined with temporal models such as Long Short-Term 
Memory (LSTM), Gated Recurrent Units (GRUs), Neural Ordinary Differential Equations 
(Neural ODEs) and Transformers to account for the dynamic evolution of turbulent 
structures. The choice of modelling architecture is left open to the participants, 
encouraging creativity and innovation.  
 
The evaluation of the proposed approaches will be carried out in two stages. First, the 
models will undergo a priori testing, where they are trained and validated against the 



 

 

database using the provided metrics. Once the architectures demonstrate sufficient 
performance, a posteriori validation will be conducted by Cenaero at the end of the 
workshop. In this phase, the models will be used to generate large-scale turbulence fields 
that serve as inflow boundary conditions in Argo-DG, an in-house high-order 
Discontinuous Galerkin (DG) solver developed at Cenaero for solving the compressible 
Navier–Stokes equations.  
 
This solver is capable of reconstructing fully developed turbulent flows, even from 
uniform and constant inflow conditions. However, the accuracy of the injected turbulence 
directly impacts the downstream flow development: the closer the inflow condition is to 
a physically consistent DHIT field, the shorter the inlet length required to regenerate a fully 
turbulent flow within the domain, potentially saving precious numerical resources. 
Consequently, this inlet development length will serve as an additional, physically 
grounded metric for ranking the performance of the different generative approaches.  
 

Project Dataset 
The dataset, generated by Cenaero, is composed of multiple simulations of DHIT, each 
initialized with a different random seed. This variation in initial conditions leads to distinct 
realizations of turbulent flow, despite all simulations starting from the same initial energy 
spectrum. The simulations are performed in a three-dimensional periodic box of size L x 
L x L, with no imposed mean flow. Each box has an effective resolution of 128 x 128 x 128, 
allowing for a detailed representation of the fine turbulent structures. Due to the 
statistical uniformity and directional consistency (isotropy and homogeneity) of the 
turbulence, the dataset is particularly well-suited for machine learning applications and 
can be further expanded through data augmentation. 

While all simulations share the same initial energy spectrum, their different random seeds 
result in unique flow evolutions. As the simulations evolve in time, turbulence naturally 
decays, and each time step yields a new 3D fields or box of the turbulent flow. Over time, 
this decay leads to a progressive reduction in the Reynolds number, reflecting the 
dissipative nature of the flow. At any given moment, it is possible to freeze the state of the 
flow at a particular Reynolds number. These frozen 3D boxes are characterized by two 
primary physical quantities: Turbulent Kinetic Energy (TKE) and Integral Length Scale 
(Lint), which in turn can be combined into an equivalent Reynolds Number. 

From the decaying simulations, a total of 214 such frozen boxes were extracted, each 
corresponding to a unique pair of TKE and Lint values. These frozen fields can then be 
used as inflow boundary conditions in numerical simulations with an imposed mean flow, 
where the frozen turbulence at the prescribed intensity will convected downstream in the 
numerical domain. This approach aligns with the well-known frozen turbulence 
hypothesis (also referred to as Taylor's hypothesis) widely used in fluid dynamics, which 
assumes that turbulent structures are advected without significant distortion over short 
time scales. 



 

 

 

Background 
Information 

The enhancement of computational capabilities and the increased accessibility of large-
scale clusters have facilitated the use of Large Eddy Simulation (LES) and Direct 
Numerical Simulation (DNS) for real compressible flow configurations. To ensure 
physically representative simulations, high-quality and realistic boundary conditions are 
essential. One of the main challenges is reproducing, at the domain inlet, an unsteady 
turbulent flow compliant with experimental conditions such as turbulence grids. Because 
such an inflow varies stochastically and continuously in space and time, defining an ideal 
turbulent inflow remains a complex task. The fluctuations must mimic real turbulence, as 
they will impact the downstream flow dynamics. The constructed turbulent flow field 
should satisfy statistical turbulent characteristics both in space and time, be fully 
developed as quickly as possible after the inlet and should be divergence-free to avoid the 
injection of spurious pressure waves (i.e., acoustic effects).  
  
A variety of methods have been proposed to obtain high-quality, fully turbulent inflow 
data, which can be categorized into four groups: (i) transition-inducing methods, (ii) 
recycling-rescaling methods, (iii) synthetic inflow generators, and (iv) turbulence library-
based methods. Each method has its trade-offs between realism, speed, and complexity. 
The more realistic methods tend to require more computing resources, while the simpler 
ones may not fully capture the true chaotic nature of turbulence. The aim of this project 
is to create a smarter and faster way to add realistic turbulence into fluid simulations 
through generative Machine Learning approaches with the short-term objective is to 
reduce the trial-and-error runs to set up the appropriate turbulence statistics at a given 
location in the main computational domain as well as the memory consumption of 
turbulence library-based method while keeping realistic turbulence that has a spectral 
content similar to that of the actual turbulence.  
  
The fluctuations should be established within a short distance from the inlet. This 
development distance is a reliable metric for evaluating the efficiency of a method and 
the validity of the underlying assumptions. The long-term objective is to obtain physical 
representativeness comparable to library-based and transition-inducing methods  while 
maintaining a low computational cost similar to synthetic methods. Recent advances in 
deep learning algorithms, coupled with the increasing power of GPUs and the 
generation of high-fidelity data, have led to the exploration of novel data-driven 



 

 

approaches to improve existing turbulence injection methods or to develop new 
ones.  
 
In this vein, Margaux Boxho et al. used state-of-the-art score-based Diffusion Models 
(DM), a class of latent variable models inspired by non-equilibrium thermodynamics, to 
generate three-dimensional periodic boxes of homogeneous isotropic turbulence. Along 
with Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAE), DMs 
belong to the class of generative models that, by learning the probability distribution of 
the training data, can produce novel outputs that retain the statistical properties of the 
original data. All generative models face a fundamental trilemma: balancing sample 
quality, generation speed, and mode coverage. GANs produce high-quality samples 
efficiently but often suffer from mode collapse, limiting their ability to capture the full data 
distribution. In contrast, VAEs and normalizing flows provide better mode coverage but 
typically generate lower quality samples. Finally, DMs are high-quality image generator 
that outperforms GANs and achieve strong mode coverage. However, their inference 
process is relatively slow due to the iterative denoising steps required for generation. 
Current research in this area aims to overcome these respective limitations: making GAN 
training more stable and mode-complete, improving the visual fidelity of samples 
generated by VAEs, and accelerating the sampling process of diffusion models through 
advanced Stochastic Differential Equation (SDE) solvers. These developments are 
essential for pushing the boundaries of generative modelling and expanding its practical 
applications across scientific and engineering domains. 
 
Although the current work focuses on homogeneous isotropic freestream turbulence, our 
goal is to develop a method that can be extended to other types of turbulent inflows, such 
as anisotropic turbulence, boundary layers, and wakes. Additionally, this approach paves 
the way for controlling and defining inflow conditions to achieve desired turbulence 
characteristics at specific locations within the computational domain. A typical scenario 
involves replicating experimental conditions recorded by a probe in a wind tunnel to 
match the numerical simulation to the experimental conditions. 
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Detailed Work 
Plan 

In the context of reproducing realistic boundary conditions for high-fidelity numerical 
simulations of turbulent flows, generating new samples from Decaying Homogeneous 
Isotropic Turbulence (DHIT) simulations has been identified as an ideal test case due to 
their spatial homogeneity, isotropic properties and relevance to several industrial 
applications. A database comprising four-dimensional DHIT fields, frozen at various time 
steps and corresponding to different Reynolds numbers, has been prepared by Cenaero 
for use in this study.  
 
To address this task, a wide range of modelling techniques may be considered. These 
include methods such as Variational Auto-Encoders (VAEs), Normalizing Flows, 
Generative Adversarial Networks (GANs), and Diffusion Models (DMs). In addition, these 
generative approaches can be combined with temporal models such as Long Short-Term 
Memory (LSTM), Gated Recurrent Units (GRUs), Neural Ordinary Differential Equations 
(Neural ODEs) and Transformers to account for the dynamic evolution of turbulent 
structures. The choice of modelling architecture is left open to the participants, 
encouraging creativity and innovation.  
 
The evaluation of the proposed approaches will be carried out in two stages. First, the 
models will undergo a priori testing, where they are trained and validated against the 
database using a set of metrics provided by Cenaero. Preceding investigations have 
established that the physical representativeness of the samples can be evaluated using a 
series of statistical metrics: the energy spectrum, two-point autocorrelation functions, 
the barycentric map, and the vorticity distribution. These metrics will guide the training 
and preliminary validation of the proposed machine learning models. 
 
Once the architectures demonstrate sufficient performance, a posteriori validation will 
be conducted by Cenaero at the end of the workshop. In this phase, the models will be 
used to generate turbulence fields that serve as inflow boundary conditions in Argo-DG. 
Although Argo-DG is capable of reconstructing fully developed turbulent flows from 
uniform and constant inflow conditions, the accuracy of the injected turbulence directly 
impacts the downstream flow development. The closer the inflow condition is to a 
physically consistent DHIT field, the shorter the inlet length required to regenerate a fully 
turbulent flow within the domain. Consequently, this inlet development length will serve 
in the a posteriori phase as an additional, physically grounded metric for ranking the 
performance of the different generative approaches. 
 
The full a posteriori testing framework, based on the injection of turbulent inflow fields 
into a free domain using the high-order Argo-DG solver, will not be directly accessible to 
participants, but they will have the opportunity to submit their generated inflow fields 
which will be injected by Cenaero into the Argo-DG flow solver. At the conclusion of the 
workshop, participants will receive feedback on their model performances, specifically in 
terms of the inlet length required to develop fully turbulent flow downstream.  
 



 

 

 
Resources needed  

• A laptop equipped with a Python environment (>= 3.9) and a ML framework is 
needed.  

• TRAIL researchers can ask access to Lucia, the Tier-1 supercomputer hosted by 
Cenaero to train the ML models. Requests for getting access to Lucia for a 
researcher of one of the Walloon universities are managed by the CÉCI and hence 
must be filed through the corresponding request system. However, the full CFD-
based simulation chain will not be directly accessible to the participants.  

 
Resources provided 

• A database containing 214 DHIT boxes, each sized 128x128x128, at various 
Reynolds numbers. 

• A custom-made PyTorch dataloader script including data augmentation 
procedures. 

• A set of a priori metrics to evaluate the generated fields. 
• Access to a private GitHub repository. 

  
Project Management 
A brainstorming session will be organized at the beginning of the workshop to introduce 
the project in detail, to exchange ideas, and to organize the team (depending on the 
number of participants, a split-off into groups of 2-3 people should be done). Daily scrum 
meetings with the whole team will be held. A private GitHub repository will be used to 
collaborate on the code developed during the workshop.  
If necessary, the database can already be shared before the start of the workshop. 
 
Benefits of the research  
This project aims to advance turbulence injection methodologies by leveraging machine 
learning to generate physically realistic turbulent inflow conditions at a reduced 
computational cost and memory footprint. By addressing the trade-off between 
simulation fidelity and resource efficiency, this work contributes to the development of 
next-generation hybrid turbulent modelling strategies. 
 
The tangible outputs / deliverables : 
  

• A demo code for each generative approach investigated on the provided DHIT data. 
• Python codes on GitHub to reproduce the generation on inflow turbulence. When 

mature enough, the codes will be released on the TRAIL Factory. The dataset could 
also be stored with the code on the TRAIL Factory.  

• Final slides and reports presenting the methodology and the results (with 
appropriate visualization plots).  
 

Depending on the results, the writing of a scientific paper could be considered after the 
end of the workshop.  
  

Other Remarks This project is linked to Grand Challenge 1, “Hybrid Modelling Methods towards an 
Augmented Engineering,” led by Cenaero. Similar to the use case of AI-enabled additive 

https://www.ceci-hpc.be/projetstier1.html


 

 

  

manufacturing, the main purpose is to investigate how machine learning can accelerate 
numerical simulations framework, such as Computational Fluid Dynamics (CFD), making 
them faster and more accessible for industrial application. In this specific proposal, we 
tackle the theme of physics-based models and generative AI to propose a novel 
framework for turbulence injection approaches. The long-term objective is to reduce the 
computational cost and memory footprint of such models, paving the way toward 
controlling inflow turbulence and streamlining the turbulence injection process of ARGO-
DG. 
 
Potential team members: (to be completed) 

• Joahim Dominique – Cenaero (Team Leader) 
• Lionel Salesses – Cenaero 
• Caroline Sainvitu – Cenaero 
• Margaux Boxho – Cenaero (remote – for the a posteriori validation) 

 
For this project, we are particularly interested in participants who have expertise or a 
strong interest in generative modelling techniques (such as diffusion models, VAEs or 
GANs) and are keen to explore the application of ML to areas such as fluid dynamics, even 
if they have no prior expertise in physics or computational fluid dynamics. If you are 
passionate about applying generative models to new and challenging domains, we 
encourage you to contribute to this project. 


