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Abstract The generation of reliable synthetic time series data remains a critical challenge in the 
application of generative AI to high-stakes domains such as healthcare, finance, and 
industrial monitoring. Unlike in image or text domains, where visual or semantic fidelity 
can be easily assessed, temporal data lacks intuitive inspection methods and robust 
quality metrics. This project proposes a novel approach to time series generation through 
the construction of a malleable and interpretable latent space using diffusion models. 
By embedding temporal dynamics into a structured representation space, we aim to 
make synthetic data generation both controllable and transparent. This latent space will 
serve as a foundation not only for evaluating the fidelity of generated sequences but also 
for enhancing the detection of out-of-distribution (OOD) samples, an essential capability 
for systems operating in uncertain and dynamic environments. Our methodology 
involves a tailored training regime with new loss constraints to shape the latent topology 
and leverages known and custom metrics to characterize and differentiate real, 
synthetic, and anomalous data. Ultimately, this work seeks to advance the reliability, 
interpretability, and trustworthiness of generative models in temporal contexts. 

Project 
Objectives 

The widespread success of generative models in domains such as image, text, and music 
has transformed the role of AI in both research and daily life [2, 3, 4]. However, the 
adoption of generative AI in high-stakes applications—particularly in healthcare, finance, 
and industrial monitoring—remains limited. A major barrier is the lack of robust, 
interpretable quality metrics for synthetic data, particularly for temporal data such as 
time series. Time series data presents unique challenges in generation and evaluation. 
Unlike images, where visual inspection can suffice for quality checks, time series lacks 
intuitive visualization for non-expert validation. Existing metrics for generated time series 
often rely on traditional statistical and machine learning approaches, which fail to 
capture the nuanced differences between real and synthetic data. This project proposes 
the development of a malleable and interpretable latent space using diffusion models, 
enabling controlled time series generation and robust out-of-distribution (OOD) 
detection. To achieve this, we introduce a specialized training regime that shapes the 
forward diffusion process to enhance both sample synthesis and OOD discriminability. 
Central to our approach is a targeted noise sampling strategy that progressively 



 

 

constrains the latent distribution to a low-dimensional linear subspace. This is achieved 
through a two-phase noise scaling schedule applied during the forward process: initially, 
noise is isotropic, but after a threshold—when the latent distribution sufficiently 
resembles a multimodal Gaussian—a subset of noise dimensions is gradually 
attenuated. This subspace alignment is further encouraged by an additional 
regularization term in the loss function, defined as the squared ℓ2 norm over the selected 
noise components. Together, these mechanisms guide the generative process toward 
geometrically structured latent representations, fostering both interpretability and 
robustness. We hypothesize that the construction of such a latent space will facilitate 
improvements in both the generation of high-fidelity synthetic data and the detection of 
anomalies or previously unobserved patterns within novel datasets. 
Diffusion models were selected for this investigation due not only to their state-of-the art 
performance in generative artificial intelligence, but also for their inherent capacity to 
incorporate custom conditioning mechanisms during the training phase such as 
conditioning [5] and guided diffusion [6]. 
Our objectives are the following: 
 
Objective 1: Integrate the proposed custom training regime into the development of a 
diffusion model tailored for time series generation, with the specific aim of constructing 
an interpretable latent space. By enforcing selected topological properties within this 
latent space, we anticipate that its structure will enable both controllable generation and 
improved interpretability of the model’s outputs. 
 
Objective 2: Choose or devise a metric on this latent space that better captures the 
difference between generated and real data. A dimensionality reduction of data and 
distillation of important features through diffusion will allow us to explore several existing 
metrics and see how they perform in the case of temporal data. 
 
Objective 3: Investigate how this combination of latent space and metric behaves in the 
context of out-of-distribution detection. We will use the latent space as a proxy detector 
for out-of-distribution data. By creating a characterization of common features of real 
and generated data, we hope anomalies and out-of-distribution data will be easier to 
detect. 
 

Project Dataset The dataset utilized in this study is the “NASA Anomaly Detection Dataset SMAP & MSL” 
[7], initially introduced in [8] for the investigation of anomaly detection in time series data. 
Since its release, it has been widely adopted for various analyses pertaining to out-of-
distribution (OOD) detection [9, 10, 11]. 
 
Dataset Description: The dataset consists of expert-annotated telemetry anomaly data 
sourced from two distinct platforms: the Soil Moisture Active Passive (SMAP) satellite and 
the Mars Science Laboratory (MSL) rover, Curiosity. The captured anomalies reflect 
operational irregularities encountered during actual spacecraft and rover missions, 
offering a robust and realistic benchmark for the evaluation of anomaly detection 
algorithms. Anomalous events previously documented in Incident Surprise Analysis (ISA) 
reports were comprehensively reviewed. Each ISA involved a thorough examination of all 
relevant telemetry channels to verify the presence of anomalies within the associated 



 

 

time series data. Annotators then manually labeled anomalous time intervals for each 
affected channel. In cases where multiple anomaly sequences or telemetry channels 
displayed high similarity, a single representative instance was selected to preserve 
dataset diversity and mitigate redundancy. Anomalies were categorized into two principal 
types: point anomalies and contextual anomalies. Point anomalies correspond to 
isolated deviations that can often be detected using threshold-based or distance-based 
methods without considering temporal dependencies. Conversely, contextual 
anomalies require the use of more advanced temporal modeling approaches—such as 
Long Short-Term Memory (LSTM) networks or Hierarchical Temporal Memory (HTM)—to 
capture temporal context and identify deviations within structured temporal patterns. 

Background 
Information Time Series  

Analysis and Generation. Time series analysis has evolved from traditional linear 
statistical models, such as ARIMA and Exponential Smoothing, to advanced deep 
learning approaches capable of modeling complex, nonlinear, and high-dimensional 
temporal dependencies. Modern architectures—including RNNs [12], LSTMs [13], GRUs 
[14], TCNs [15], and Transformer- based models [16] have been specifically developed or 
adapted to address the sequential and often non-stationary characteristics of time series 
data. Advances in time series generation leverage GAN based models [17] to synthesize 
realistic sequences that preserve temporal and distributional properties of the original 
data. More recent developments include diffusion models such as TimeGrad [18] using 
DDPM [19] as a basis and its score-based [6] counterpart ScoreGrad [20]. See [21] for an 
in-depth discussion. Anomaly detection remains crucial for domains such as predictive 
maintenance, fraud detection and preventive health- care. Deep learning models, 
including USAD [22], InterFusion [23], and TranAD [24], have demonstrated superior 
performance over classical methods, particularly in high-dimensional or nonlinear 
settings. Out-of-distribution (OOD) detection, although less explored in time series than 
in vision or NLP, is gaining attention [25, 26, 27, 28]. Nevertheless, OOD detection in time 
series is challenged by data heterogeneity and the absence of standardized benchmarks.  

Measuring similarities. Time series similarity measures are essential for tasks such as 
classification, clustering, and anomaly detection, with various methods tailored to 
address alignment, noise, and data complexity. Outside of the immediate Euclidean 
distance a common metric used is dynamic time warping [29] that effectively handles 
temporal misalignments. Correlation based metrics, such as Pearson correlation 
coefficient and cosine similarity prove effective to assess linear or angular relationships 
between series. These are scale-invariant but may fail to capture shape differences or 
temporal shifts. Methods like Complexity-Invariant Distance [30] adjust for series 
complexity. The choice of similarity measure should be guided by data characteristics 
and task requirements. Due to the intrinsic data heterogeneity in time series no single 
metric is accepted as universally optimal.  

 

Diffusion Models  



 

 

Diffusion models [31, 32, 33, 34, 2] have emerged as a powerful class of likelihood based 
generative models, demonstrating state-of-the-art performance in high-fidelity image 
synthesis tasks [31, 19, 35]. These models operate through a two-stage process. In the 
forward diffusion process, Gaussian noise is incrementally added to the input data over 
a series of time steps, progressively transforming the data into a noise distribution. In the 
reverse diffusion process, a neural network is trained to learn the denoising trajectory, 
effectively reconstructing data by reversing the noise addition step-by-step. 
Conceptually, diffusion models share a high-level resemblance to Variational 
Autoencoders (VAEs) [36], in that both involve projecting data into a latent space and 
reconstructing it. However, unlike VAEs—which directly approximate the data 
distribution using variational inference—diffusion models learn a Markovian noise 
corruption process and its time-reversal, enabling a more stable and fine-grained 
generation process. This hierarchical denoising mechanism allows diffusion models to 
capture complex data distributions with high precision. For an in-depth mathematical 
treatment of the underlying principles, readers are referred to [37, 38].  

 

Quality Metrics  

The advent of Generative Adversarial Networks (GANs) [39] and their capacity to produce 
high-quality synthetic data have highlighted the need for rigorous and interpretable 
metrics to evaluate the performance and reliability of generative models. One of the 
earliest such metrics is the Inception Score (IS) [40], which employs the Inception 
network [41] to derive the conditional label distribution of generated samples. The IS 
quantifies sample quality by computing the Kullback–Leibler divergence between the 
conditional label distribution and the marginal label distribution, aiming to capture both 
the clarity and diversity of generated outputs. A more robust alternative, the Fréchet 
Inception Distance (FID) [42], also leverages the Inception network but instead compares 
the feature distributions of real and generated data. It assumes these distributions are 
Gaussian and computes the Fréchet distance (also known as the Wasserstein-2 
distance) [43] between them. FID has been shown to be more stable and less sensitive 
to noise than IS. To address the limitations imposed by the Gaussian assumption in FID, 
the Kernel Inception Distance (KID) [44] was introduced. KID measures the squared 
Maximum Mean Discrepancy (MMD) between real and synthetic feature embeddings, 
using a polynomial kernel, and provides unbiased estimations with finite sample sets. 
More recently, efforts to refine quality assessment have focused on multidimensional 
evaluations of generative models. Alaa et al. [45] propose a comprehensive framework 
that separately quantifies three core aspects of generative quality: fidelity, diversity, and 
generalization. Their methodology relies on an embedding space shared by real and 
synthetic data, allowing for targeted comparisons using parameterized distance metrics.  

 

Out of Distribution Detection  

Out-of-distribution (OOD) detection is crucial for the reliability and safety of machine 
learning systems, such as alerting autonomous vehicles to unfamiliar situations. Since 



 

 

the term introduction in 2017, OOD detection has spurred a range of methods and 
overlaps with related fields like anomaly detection, novelty detection, open set 
recognition, and outlier detection—though these areas often develop independently, 
leading to confusion over definitions. The common denominator of these disciplines is 
the need to identify samples that are not part (what “being part of” means often being the 
trait that differentiates between them) of the training distribution. OOD benefits from 
being a problematic that can be tackled from several angles. Common statistical 
methods such as the Mahalanobis distance [46], post-hoc methods [47, 48] or a more 
theoretical insight [49]. We refer the reader to [50] for a more complete overview of the 
field. 
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Detailed Work 
Plan While the overall structure of the project pipeline follows conventional practices, we 

provide here an informal overview of its anticipated progression. The principal objective 
is the successful implementation of a customized training regime for a diffusion-based 
generative model. Initial efforts will focus on established metrics and out-of distribution 
(OOD) detection methods within the latent space, with novel approaches considered 
only upon time availability. 

 The project is structured in the following stages:  

• Model training: A diffusion model will be trained, comprising both a forward process 
𝑀𝑓and a backward process 𝑀𝑏, with the custom training regime applied throughout.  

• Synthetic data generation: The backward model 𝑀𝑏  will be employed to generate 
multiple synthetic datasets, denoted {𝐷𝑖}.  

• Latent space projection: Each synthetic dataset 𝐷𝑖  will be mapped to the latent space 
via the forward model 𝑀𝑓.  

• Metric evaluation: A variety of metrics will be applied in the latent space to quantify the 
divergence between real and synthetic features. Metrics that most effectively capture 
these distinctions will be selected.  

• Model refinement: A cloned instance of the backward model 𝑀𝑏 will be fine-tuned to 
improve the placement of synthetic samples in the latent space in accordance with the 
selected metrics.  

• Final evaluation: Improvements in synthetic sample quality and the effectiveness of 
OOD detection will be assessed as downstream outcomes of the preceding steps.  

Below are details pertaining to specific components of the project that may be of 
particular interest for further specification.  Forward process schedule and loss 
function: The training protocol is outlined as follows. During the forward diffusion 
process, we implement a targeted noise sampling strategy. Let 𝐙  =  (𝐙𝟏,   … ,  (𝐙𝐧 ) ∼

𝐍(𝜇,  Σ))  denote a multivariate Gaussian distribution. It is a well-established property 
that any sub-vector (𝐙𝐢𝟏 ,   … ,  𝐙𝐢𝐤) of 𝐙 also follows a Gaussian distribution. We leverage 
this property to direct noise sampling along specific linear subspaces, thereby enhancing 
the separability and visibility of anomalous or alien features. 

The technical details may be refined as the project progresses. Let 𝑛 be the dimension of 
samples in the dataset and of the sampled noise and 𝑇  the last step on the diffusion 
process. To operationalize this, we define a noise scaling schedule {𝛾𝐭, 𝐢}  , where 𝐭 
denotes the diffusion time step and 𝑖  indexes the 𝑖 -th component of the noise vector. 
This schedule operates in two distinct phases. In the initial phase, noise is isotropic 
across all components: ∀𝑡,  𝛾𝑡,𝑖   =  1 . Once the forward diffusion distribution 𝑞𝑡  ∼
𝑞(𝑥𝑡  ,  𝑥0)  sufficiently approximates a multimodal Gaussian (quantified by a threshold), 
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we initiate the second phase. At this stage, a subset of components {𝑖𝑘}  ⊆ {1,   … ,  𝑛}, 
selected based on dataset complexity, are progressively attenuated. Specifically, the 

scaling coefficients 𝛾𝑡,𝑖   decay according to:𝛾𝑡,𝑖   =   (
1

𝑛
)
𝑡
 𝑖𝑓 𝑖  ∈  {𝑖𝑘} ,  𝑒𝑙𝑠𝑒 1  such that, 

asymptotically, the noise vector is confined to a lower-dimensional linear subspace of 
the latent space. To further reinforce this structural bias in the latent space, we augment 
the loss function with an additional regularization term. This term penalizes deviations 
from the desired subspace alignment and introduces an inductive bias toward the 
intended representation geometry. For simplicity and computational efficiency, we 
currently define the regularization as the squared ℓ2  norm over the selected 
components:  ℒ𝑟𝑒𝑔   =  Σ𝑖 ∈{𝑖𝑘}𝑥𝑇,𝑖

2  . This formulation encourages concentration of the 
latent representation within the designated subspace, thereby promoting more 
interpretable and structured generative dynamics.  

Data format: With temporal data there is always the key choice of the representation 
space. We are going to use both the time-domain and frequency-domain representation. 
We hypothesize that models could benefit from having both these representations given 
in an explicit way.  

Model selection and architecture: We will start by using two common approaches for 
diffusion models: DDPM [19] and its generalization using score-based SDEs [6]. Both 
approaches are flexible enough to allow for a multitude of architectures. Currently, U-
Nets with attentions layers have proven to be the most surefire approach for diffusion 
models. The models will be trained with a standard agenda for diffusion models.  

Gen AI metrics and OOD detection: Under the assumption that the latent space 
captures the essence of the data, we will use known methods as Mahalanobis distance, 
Kernel Density Estimation and Laplacian eigenmaps to find three types of characteristics 
in the data:  

• features that are common to both synthetic and real data;  

• features unique to the synthetic data;  

• features only particular to the real data;  

We can then use these to both identify synthetic data and to find outliers in the real data 
by identifying which features are most prominent in each sample. This method can be 
used in an iterative refinement process to improve the generative model by either 
eliminating features only particular to the synthetic data or by making them alike to those 
of the real data.  

Evaluation: For OOD benchmarking we will use standard metrics such as AUROC, F1 
score, FPS and accuracy on our dataset. For generative AI quality we will compare how 
our method performs against the standard metrics such as FID, IS and KID when applied 
to temporal data. We will also use common metrics for time series: Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and the Continuous Ranked Probability Score (CRPS) 
[51].  



 

 

 

 

 

 Project Management  

A preliminary literature review and initial discussions among researchers will take place 
prior to the start of the workshop. The workshop itself will focus on designing and 
implementing the framework, conducting experiments, and analyzing results. A Kanban 
board (using tools like Notion or Trello) will help break down the work into manageable 
tasks for team members. Code development will be managed through a Gitlab served at 
the TRAIL Factory, enabling real-time collaboration. Communication will be facilitated via 
Slack for easy exchange of ideas and file sharing. For remote participants, a Microsoft 
Teams meeting will remain open during working hours to ensure continuous engagement. 
Tasks related to writing the publication will be scheduled after the workshop. Once final 
teams are confirmed, a detailed task breakdown and Gantt chart will be shared.  

Tools and Resources  

• Hardware: GPU for training Deep Learning models, hopefully at least 24Gb of VRAM on 
minimum a 4090 RTX;  

• Logistics: internet access, electrical outlets and/or extensions for team members, room 
with tables and chairs for the team members, white board or a similar writing surface, 
projector to share our computer screens to present results, etc;  

• Programming Language: Python;  

• Frameworks: PyTorch;  

• Development environment: git + docker 

 
Other Remarks This project is directly related to the “Great Challenge 5” (Weakly Supervised Machine 

learning, Towards a More General AI) of the ARIAC/TRAIL initiative [52]. 
 
Expected Outcomes 
The expected outcomes of this work include the development of a novel, interpretable 
diffusion-based latent space specifically designed for time series data. We aim to 
introduce new metrics for evaluating the quality of generated time series, alongside a 
validated methodology for out-of-distribution (OOD) detection grounded in the structure 
of latent embeddings. To support transparency and reproducibility, we will provide an 
open-source implementation and a comprehensive benchmarking framework. If results 
show sufficient innovation and impact, we will of course publish our findings. 


