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Abstract As AI becomes increasingly integrated into high-stakes domains like healthcare, ensuring 
that models are not only accurate but also reliable and robust is essential. This project 
focuses on advancing trustworthy AI for medical image segmentation by exploring the 
synergy between uncertainty quantification and adversarial training. Specifically, it 
proposes to leverage evidential deep learning, which provides single-pass uncertainty 
estimates, to guide the generation of adversarial examples during training. By prioritizing 
high-uncertainty regions, we aim to improve both the model’s robustness and the 
reliability of its confidence estimates. The approach will be applied to binary lung 
infection segmentation using the QaTa-COV19 chest X-ray dataset—a clinically relevant 
and well-annotated resource. This project focuses on evaluating models across three key 
dimensions: segmentation performance, robustness to perturbations, and quality of 
uncertainty estimates. The ultimate goal is to demonstrate how uncertainty-aware 
training strategies can make medical AI systems more dependable and aligned with 
emerging regulatory standards such as the European AI Act. 

Project 
Objectives 

With the increasing adoption of AI systems across diverse application domains, 
regulatory frameworks such as the European AI Act have emerged to ensure the 
trustworthiness of these technologies. Trustworthy AI goes beyond achieving high 
performance—it must also be explainable, robust, and uncertainty-aware. These 
requirements are especially critical in high-stakes applications like medical imaging, 
where the consequences of model errors can directly impact human lives. 
 
In this context, AI models used for diagnosis support must be capable of more than just 
making predictions. They should also recognize when they are uncertain and defer 
decisions to human experts rather than output potentially misleading results. 
Furthermore, they must maintain performance in the face of variability in data, such as 
differences in medical devices, acquisition protocols, and patient-specific conditions. 
This calls for models that are both robust to distributional shifts and adversarial 
perturbations, and that can provide reliable confidence estimates. 
 



 

 

This project focuses on the task of medical image segmentation, a foundational 
component in numerous clinical workflows including tumor delineation, lung pathology 
analysis, and cell structure identification. Accurate segmentation helps medical 
professionals localize regions of interest and make more informed decisions. However, 
due to the sensitivity of the task, segmentation models must be resilient to variations in 
imaging conditions and able to signal uncertainty in ambiguous or unfamiliar scenarios. 
 
To address these challenges, the project will pursue the following core objectives:  
 

1) Develop a robust segmentation model through adversarial training. Adversarial 
training involves generating carefully crafted perturbations (adversarial examples) 
during training that can potentially mislead the model. By learning to resist such 
perturbations, the model becomes more robust to both natural and adversarial 
noise that may occur in real-world settings. 

2) Design an uncertainty-aware segmentation model based on evidential deep 
learning. Unlike standard neural networks that output point estimates, evidential 
models output parameterized distributions over possible predictions, providing a 
natural way to estimate model uncertainty. These models accumulate evidence 
during training and express their confidence in the form of a belief distribution, 
enabling them to recognize and quantify uncertainty—particularly in out-of-
distribution or ambiguous cases.  

3) Combine adversarial training with uncertainty-guided example selection. The 
project will investigate how uncertainty estimates can be leveraged to drive 
adversarial training more effectively. Instead of generating perturbations 
uniformly or randomly, the training will prioritize samples with high predictive 
uncertainty, which are typically the most error-prone or fragile. Targeting the most 
uncertain examples when applying adversarial attacks should lower the required 
number of adversarial examples used during training, improving stability without 
sacrificing performance. This targeted strategy aims to both improve model 
robustness in vulnerable regions and enhance the reliability of uncertainty 
estimates. 

 
The project will evaluate these approaches along three essential dimensions: 
segmentation performance, robustness and uncertainty quality. By jointly addressing 
these criteria, the project seeks to demonstrate how state-of-the-art techniques in 
adversarial training and uncertainty modeling can be synergistically applied to build more 
trustworthy AI systems for medical imaging. 

Project Dataset This project aims to use the open dataset “QaTa-COV19 Dataset” available on Kaggle: 
https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset/data 

The QaTa-COV19 Dataset is a curated collection of chest X-ray (CXR) images specifically 
designed to support research in COVID-19 detection and infection region segmentation. 
It provides a high-quality and well-structured resource for training and evaluating AI 
models in medical imaging, with a focus on segmentation tasks. 

Developed through collaboration between Qatar University and Tampere University, the 
dataset includes both COVID-19 positive cases and control samples. The latest version 

https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset/data


 

 

contains 9,258 CXR images of COVID-19-infected patients, each accompanied by a 
manually annotated ground-truth segmentation mask highlighting infected lung regions. 
Additionally, the dataset includes 12,544 images from a control group with no visible 
signs of lung infection, enabling the development of models that can differentiate 
between infected and healthy lungs. 

The infected-lung subset is already divided into training and test sets, with 7,145 images 
allocated for training and 2,113 for testing, representing a well-balanced split (~23% for 
testing). All images and segmentation masks are provided in PNG format, making them 
straightforward to preprocess, visualize, and integrate into standard deep learning 
workflows. 

Due to its binary segmentation nature (infected vs. non-infected regions), this dataset is 
particularly well-suited for a focused two-week workshop on medical image 
segmentation. Its manageable complexity allows for the exploration of advanced topics 
such as uncertainty quantification and adversarial robustness, without the overhead of 
multi-class segmentation challenges. The dataset's size, structure, and clinical 
relevance make it an ideal platform for investigating trustworthy AI methods in critical 
healthcare applications. 

Background 
Information 

Machine learning and deep learning models are increasingly deployed across a wide 
range of domains—from natural language processing to autonomous driving and medical 
diagnostics—due to their remarkable performance. However, in high-stakes applications 
such as healthcare, performance alone is not enough [1-3]. Models must also be 
trustworthy, which means they must be robust, explainable, and uncertainty aware. 
 
This need for trustworthy AI is further underscored by upcoming regulatory frameworks 
like the European AI Act [4], which imposes stringent requirements on AI systems, 
especially in critical domains such as medicine. In this context, ensuring that models can 
reliably express their uncertainty and remain robust against adversarial perturbations or 
natural noise becomes a necessity rather than a luxury. Moreover, the ability of a model 
to self-assess its uncertainty is very important, as it enables the system to identify cases 
where it is unsure and defer the decision to a human expert [5], rather than risking an 
incorrect or potentially harmful prediction. 
 
Uncertainty quantification 
Uncertainty quantification in machine and deep learning seeks to model the predictive 
uncertainty of AI models. This uncertainty can be decomposed into two primary 
categories: aleatoric uncertainty and epistemic uncertainty [5,6]. 
 
Aleatoric uncertainty refers to the inherent variability in real-world situations. This type of 
uncertainty can arise from noise during data collection, insufficient feature selection 
(where the available data does not contain enough information to adequately capture the 



 

 

data generation process), or poor resolution (e.g., low sampling frequency or image 
resolution). Aleatoric uncertainty is irreducible by adding more data, as it is rooted in the 
intrinsic variations of the environment or system. 
 
Epistemic uncertainty, on the other hand, relates to the model’s limitations in 
understanding or representing the problem. It includes issues such as the 
representativeness of the data, shifts in data distributions, or out-of-distribution data. 
Epistemic uncertainty is also influenced by model choices, including the architecture, 
optimizer, loss function, and hyperparameters. Unlike aleatoric uncertainty, epistemic 
uncertainty can be reduced by gathering more data or refining the model. 
 
Traditional machine/deep learning models are typically deterministic in their predictions, 
providing only a point estimate that satisfies the optimization criteria, such as the mean 
or mode of the predictive distribution. To estimate uncertainty, various methods aim to 
recover the full predictive distribution. Some approaches, like Bayesian methods, 
estimate a posterior distribution over model parameters [5,7], using techniques such as 
local approximations [8-10], variational inference [11], and Monte Carlo dropout [12]. 
Other methods, such as ensemble methods [13], combine predictions from multiple 
models to capture variability across different potential solutions. These methods require 
multiple forward passes through the network, which can be computationally expensive, 
particularly for real-time applications [14]. 
 
To address these limitations, deterministic methods have been proposed to estimate 
uncertainty with a single forward pass. One such approach involves using an external 
model to capture the uncertainty of the primary model, often by measuring the distance 
in the representation space [15,16]. However, this can be prone to issues like feature 
collapse or inconsistencies in distance preservation between the input and 
representation spaces [17]. 
 
A promising deterministic approach is evidential learning, which is grounded in the 
Dempster-Shafer theory of evidence [14,18,19]. Instead of directly predicting the target, 
evidential methods model a belief distribution over possible target. During training, the 
model accumulates evidence from the data, refining its belief distribution. Regions 
where the model has gathered more evidence will have a more peaked belief distribution, 
while regions with less evidence will result in a flatter distribution. This method can also 
be used to detect out-of-distribution data through regularization techniques. 
 
Evidential deep learning was initially introduced for classification problems [18] and has 
since been extended to regression tasks [14,19]. Various modifications have been 
proposed to enhance its ability to capture uncertainty. A key advantage of evidential 
methods is that the uncertainty estimates have an analytical closed form, allowing for 



 

 

efficient computation in a single pass, alongside the prediction, which is typically 
represented as the expectation of the belief distribution. 
 
Evidential learning can be integrated into existing architectures with minimal 
adjustments, such as modifying the loss function or replacing the output layer and 
activation function. This flexibility means that any existing model can be adapted to gain 
insights into its uncertainty estimates. Once uncertainty estimates are obtained, they 
can be compared to a threshold, determined by the specific use case, to decide whether 
to accept or reject a prediction. If the uncertainty is too high, the prediction can be 
flagged for human expert verification [5]. 
 
Evidential deep learning has already been successfully applied to various domains, 
including image segmentation. For instance, it has been used for out-of-distribution 
obstacle detection in autonomous driving applications [20] and for tumor segmentation 
in the medical domain [21]. These applications demonstrate the potential of evidential 
learning to handle uncertainty effectively in critical tasks, where both the model's 
prediction and its uncertainty are essential for decision-making. 
 
Robustness 
Robustness in machine learning and deep learning refers to evaluating model's ability to 
maintain consistent predictions when exposed to input perturbations. This typically 
involves assessing whether the model's output remains stable or satisfies some 
properties under various modifications to the input. 
 
Both the nature of input perturbations and the definition of the output property being 
evaluated may vary depending on the task or application domain. Nonetheless, the 
concept of stability—defined as a model’s ability to preserve its performance level under 
such perturbations—is widely recognized as a fundamental aspect of robustness. This 
notion is formalized in standards such as ISO/IEC TR 24028-1 and ISO/IEC TR 24029-1. 
 
Deep learning models are known to be vulnerable to two main types of perturbations: 
adversarial examples, which are carefully crafted and imperceptible modifications 
designed to manipulate the model's output [22]; and natural perturbations, which arise 
from real-world conditions such as lighting variations, sensor noise, or other 
environmental factors. These vulnerabilities are significant obstacles to the deployment 
of AI models in safety-critical domains and are respectively categorized under adversarial 
robustness and non-adversarial robustness. 
 
Robustness is generally evaluated locally, in the neighborhood of specific input 
examples. This involves assessing whether perturbations—whether adversarial or 



 

 

natural—can lead to violations of the desired model property when applied to input 
examples. 
 
Adversarial robustness studies the existence of adversarial examples, which are 
generated using adversarial attacks (also known as evasion attacks) that aim to 
compromise a model’s robustness. Some of these attacks, such as the Fast Gradient 
Sign Method (FGSM) [23] and Projected Gradient Descent (PGD) [24], leverage gradient 
information from the model to construct perturbations. Others, like DeepFool [25] and 
the Carlini & Wagner (C&W) attack [26], rely on geometric approaches (e.g., orthogonal 
projections to estimated decision boundaries) or formulate explicit optimization 
problems to craft adversarial examples. Adversarial examples are typically constrained 
by a perturbation budget or radius, which bounds their magnitude according to a 
specified norm. 
 
Adversarial training 
Adversarial training has naturally emerged as a prominent defense mechanism against 
adversarial attacks. It involves optimizing the model with respect to the worst-case loss 
over a perturbation region, often referred to as the robustness loss. Since this loss is 
intractable, adversarial attacks are commonly used to approximate it, providing a lower 
bound loss during training [24]. 
 
Adversarial training presents several challenges. It is computationally intensive [27], and 
it implies a trade-off between standard accuracy (on regular inputs) and robustness (on 
perturbed inputs) [28,29]. A widely adopted approach to make the learning procedure 
efficient and scalable is to group both normal and adversarial examples together before 
each training step [30]. This is usually done by randomly selecting data from the batch to 
generate adversarial samples. In this setup, carefully selecting which examples to attack 
based on an uncertainty measure could improve the stability of the training process and 
help mitigate the trade-off between robustness and standard accuracy. 
 
Although adversarial training and uncertainty estimation are both active research areas, 
to the best of our knowledge, the integration of uncertainty estimation to improve 
adversarial training has not yet been thoroughly explored. Previous studies have shown 
that adversarial examples can fool uncertainty estimation techniques [31,32], 
highlighting the vulnerability of models that attempt to estimate uncertainty. However, 
the reverse—using uncertainty to enhance adversarial robustness—remains an open 
question in the literature. 
 
In this proposal, we aim to address this gap by introducing evidential learning as the 
uncertainty estimation technique in the context of adversarial training. Evidential 
learning offers a key advantage: it provides uncertainty estimates in a single forward 



 

 

pass, making it computationally efficient and scalable to large datasets and complex 
models. This efficiency is crucial in adversarial training, where multiple training iterations 
are required, and speed is essential to manage the computational cost. 
 
Furthermore, by directly applying adversarial training to an uncertainty-aware model, we 
hypothesize that the model's robustness will improve. This is because the model not only 
becomes more resistant to adversarial attacks on its predictions but also to adversarial 
manipulation of its uncertainty estimates. In this way, the model should become more 
challenging to deceive, improving both the reliability of its predictions and the 
trustworthiness of its uncertainty estimates. 
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Detailed Work 
Plan 

This project is dedicated to the implementation and evaluation of robust, uncertainty-
aware image segmentation models, with a focus on medical applications. The work plan 
is structured around three core pillars: image segmentation, uncertainty estimation, and 
robustness through adversarial training. These components will be developed in parallel, 
with coordinated integration and benchmarking. 
 
Image Segmentation 
The core task of image segmentation is approached as a pixel-wise classification 
problem. Given its clinical relevance, we will adopt architectures well-established in 
medical imaging, such as U-Net, Fully Convolutional Networks (FCN) or DeepLabV3. 
These models are readily available through popular libraries such as PyTorch, Hugging 
Face, or segmentation_models.pytorch [33]. Pretrained weights can be leveraged to 
accelerate development and rapidly establish strong baselines. 
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A classical segmentation model will be trained on the QaTa-COV19 dataset, which 
provides binary segmentation masks indicating infected lung regions. This serves as the 
foundation for the uncertainty and robustness enhancements introduced in later stages. 
 
Uncertainty Estimation 
A key objective of the project is to incorporate evidential deep learning into the 
segmentation pipeline. Evidential models learn to produce a distribution over possible 
predictions, enabling the estimation of epistemic uncertainty in a single forward pass. 
This will require minor modifications to the model’s final layer (e.g., from sigmoid to 
softplus activations for evidence output) and training with an evidential loss, such as the 
Bayesian Risk Loss or the Type-II Maximum Likelihood Loss tailored for the Beta 
distribution in binary segmentation. 
 
Pixel-wise uncertainty can be derived from the evidential parameters (e.g., entropy or 
variance of the Beta distribution). We will also experiment with heuristic uncertainty 
surrogates in non-evidential models, such as the Bernoulli variance, to compare 
effectiveness. 
 
At the image level, uncertainty aggregation strategies will be explored—ranging from 
simple statistics (mean, max) to threshold-based counts (e.g., number of pixels above a 
certain uncertainty level). Novel aggregation strategies may also emerge through 
discussion and experimentation during the workshop. 
 
Robustness via Adversarial Training 
To improve model reliability under input perturbations, adversarial training techniques 
will be implemented. This involves generating adversarial examples—deliberate, small 
perturbations of the input designed to fool the model—and incorporating them into 
training. We plan to explore fast and effective methods such as FGSM (Fast Gradient Sign 
Method), R+FGSM (Random-FGSM) and PGD (Projected Gradient Descent). 
 
A unique aspect of this project is to guide adversarial training using uncertainty. 
Specifically, we will prioritize generating adversarial examples from high-uncertainty 
samples from the batch, based on either evidential or surrogate uncertainty estimates. 
This selective strategy is expected to target weak points of the model more effectively 
than random sampling. Three adversarial training regimes will be evaluated. Random 
sample-based adversarial training, uncertainty-guided adversarial training and a 
baseline training without adversarial examples. These will be applied to both classical 
and evidential models to evaluate the benefits of combining adversarial robustness with 
uncertainty awareness. 
 
Evaluation and Benchmarking 
Evaluation will cover three complementary aspects. Segmentation performance, 
uncertainty quality and robustness. Performance can be accessed via Dice Coefficient 
or Intersection over Union (IoU). Uncertainty quality involves the Area Under the 
Sparsification Error curve (AUSE) [34]. Robustness will be studied via performance 
degradation under adversarial perturbations (Dice/IoU vs. perturbation magnitude) and 
uncertainty shift under attack (e.g. measure of correlation). 



 

 

 
These metrics will allow us to benchmark models not only on their accuracy, but also on 
how well they know what they don’t know—and how resilient they are to difficult or 
malicious inputs. 
 
Project Management 
The project welcomes contributors with backgrounds in machine/deep learning, 
uncertainty modeling, computer vision, or software engineering. Familiarity with image 
segmentation or PyTorch is beneficial but not required. Members with strong 
development experience will play a key role in building reliable workflows, experiment 
tracking, and reproducibility tools. The project can be separated into the following tasks: 

• Data preprocessing, augmentation, and loading 
• Training classical segmentation models 
• Adapting models for evidential learning 
• Implementing the adversarial training pipeline 
• Developing evaluation and visualization tools 

 
Roles and responsibilities will be assigned collaboratively during a pre-workshop online 
meeting. Key architectural and experimental design choices—such as model selection, 
loss functions, and adversarial attack methods—will also be discussed in advance to 
ensure an efficient start. 
 
Tasks like classical and evidential model training, uncertainty processing, and 
robustness evaluation will be developed in parallel to avoid bottlenecks and encourage 
iterative improvements. 
 
Tools and Resources 

• Programming Language: Python 
• Frameworks: PyTorch, PyTorch Lightning (optional), 

segmentation_models.pytorch [33], Torchmetrics 
• Visualization: Plotly, Matplotlib 
• Adversarial Tools: Adversarial Robustness Toolbox [35] 
• Version Control: Git 
• Environment Management: Virtual environment or Docker (based on team 

preferences and constraints) 
• Compute Resources: Access to the LUCIA supercomputer via ARIAC/Cenaero 

Other Remarks This project is directly related to the “Grand Challenge 6” (Trustworthy AI for Critical 
Systems) of the TRAIL initiative. 

 


